(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false
function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))
function(plus, dummy, x, y) → function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) → y
function(if, false, x, y) → function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) → z
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
function(p, s(s(x)), dummy, dummy2) →+ s(function(p, s(x), x, x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [dummy / x, dummy2 / x].
(2) BOUNDS(n^1, INF)